

Contents lists available at ScienceDirect

Applied Radiation and Isotopes

journal homepage: www.elsevier.com/locate/apradiso

Quantitative online isolation of ⁶⁸Ge from ⁶⁸Ge/⁶⁸Ga generator eluates for purification and immediate quality control of breakthrough

Elisabeth Eppard, Natalia S. Loktionova, Frank Rösch*

Institute of Nuclear Chemistry, University of Mainz, D-55128 Mainz, Germany

HIGHLIGHTS

• ⁸Ga is separated quantitatively and online from co-eluted ⁶⁸Ge.

• Separation was achieved by the use of a cation exchange resin.

• ⁶⁸Ge breakthrough in ⁶⁸Ge/⁶⁸Ga generators eluate is determined immediately.

ARTICLE INFO

Article history: Received 3 May 2013 Received in revised form 18 July 2013 Accepted 18 July 2013 Available online 25 July 2013 Keywords:

Ga-68 Ge-68 Generator Breakthrough Separation

1. Introduction

Representative commercially available 68 Ge/ 68 Ga-generators provide initial activities of 20 mCi (0.74 GBq), 30 mCi (1.11 GBq), 50 mCi (1.85 GBq) or more of 68 Ge and 68 Ga. In the first weeks of use, elution produces 68 Ga-yields of 60–90%, accompanied by 68 Ge-breakthrough between 10⁻² and 10⁻⁴% of the respective initial activities (Roesch and Riss, 2010; Loktionova et al., 2009). This breakthrough of 68 Ge from a 68 Ge/ 68 Ge-generator is a critical parameter in the context of the routine clinical application of 68 Ga-radiopharmaceuticals (Breeman and Verbruggen, 2007; Breeman et al., 2011) Breakthrough refers to the actual 68 Ge load of the generator, and is reported as the activity of 68 Ge in the eluate relative to that on the generator column. This is the preferred definition, but can also be expressed as the activity of 68 Ge co-eluted relative to the 68 Ga present in the eluate fraction (Breeman et al. 2011).

⁶⁸Ge decays exclusively by electron capture and therefore can only be radiochemically detected indirectly through the photon

* Corresponding author. E-mail address: frank.roesch@uni-mainz.de (F. Rösch).

ABSTRACT

The breakthrough of ⁶⁸Ge from a ⁶⁸Ge/⁶⁸Ga-generator is one of the most sensitive parameters in the context of the clinical application of ⁶⁸Ga-radiopharmaceuticals. The difficulty in its determination lies in the "spectroscopic invisibility" of ⁶⁸Ge within an excess of ⁶⁸Ga.

The introduced method for determining the ⁶⁸Ge content of the ⁶⁸Ge/⁶⁸Ga-generator eluate involves the quantitative separation of ⁶⁸Ga from ⁶⁸Ge, using a cation-exchanger.

The eluate contains ⁶⁸Ga free of ⁶⁸Ge, which can be determined immediately, i.e. prior to the application of the ⁶⁸Ga-radiopharmaceutical.

© 2013 Elsevier Ltd. All rights reserved.

emission of its daughter nuclide, ⁶⁸Ga. Therefore it is not possible to detect ⁶⁸Ge within an excess of ⁶⁸Ga using γ -spectroscopy. For a "fresh" 30 mCi generator, ⁶⁸Ge activities in the eluate are 3 μ Ci– 30 nCi (for breakthrough levels of 10^{-2} – 10^{-4} %), within 18–27 mCi of ⁶⁸Ga corresponding to 60–90% initial ⁶⁸Ga elution yield. The decay of the eluted ⁶⁸Ga, according to its half-life ($t_{1/2}$ =67.71 min) follows Eq. (1):

$$A_{Ga}^{t} = A_{Ga}^{o}(e^{-\lambda t}) \tag{1}$$

$$\ln(A_{Ga}^{t}) = \ln(A_{Ga}^{o}) - \frac{\ln 2}{t_{1/2}}t$$
(2)

$$\approx \ln(A_{Ga}^{0}) - 0.01t \tag{3}$$

 $A_{Ga}^{0} = {}^{68}$ Ga activity immediately after elution; $A_{Ga}^{t} = {}^{68}$ Ga activity at time points *t* after elution.

The total activity of ⁶⁸Ga in the generator eluate, originates from both by the decay of eluted ⁶⁸Ga and ⁶⁸Ga generated from the ⁶⁸Ge co-eluted. Thus, Eq. (4) applies,

$$A_{Ga}^{t} = A_{Ga}^{o}(e^{-\lambda_{Ga}t}) + \frac{\lambda_{Ga}}{\lambda_{Ga} - \lambda_{Ge}} A_{Ge}^{o}(e^{-\lambda_{Ge}t} - e^{-\lambda_{Ga}t})$$
(4)

^{0969-8043/\$ -} see front matter © 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.apradiso.2013.07.020

Fig. 1. Decay of initially eluted 27 mCi of ⁶⁸Ga in terms of real time after elution (lower *x*-axis) and multiples of half-live of ⁶⁸Ga (upper *x*-axis), with logarithmic (LOG) or linear scale (LIN) of activity.

 $A_{\text{Ga}}^{0} = {}^{68}\text{Ge}$ activity co-eluted (=breakthrough); $A_{\text{Ga}}^{t} = {}^{68}\text{Ga}$ activity at time points *t* after elution; $\lambda = \ln 2/t_{1/2}$.

Fig. 1 shows the decay of eluted 68 Ga with time (shown in hours, and as the number of 68 Ga half-lives) in linear and logarithmic forms. The 68 Ga activity eluted is reduced to 10^{-2} and 10^{-3} % of the initial activity present in the eluate at 7.50 and 12.00 h post elution, respectively. At these two time points, the 68 Ga activity in the generator eluate equals the 68 Ga activity generated by decay of 68 Ge-breakthrough levels of 10^{-2} and 10^{-3} %, respectively. That is, the measured activity is constant because the rate of 68 Ga decay is equal to the rate of 68 Ga generation (from 68 Ge decay).

Current methods for the γ -spectroscopic determination of ⁶⁸Ge involve storing the generator eluate solutions for long periods, to allow for the complete decay of the excess eluted ⁶⁸Ga down to the ⁶⁸Ge levels. However, legal regulations governing radiopharmaceutical production require that quality control to be completed prior to the clinical application of the radiopharmaceutical. Given the significantly shorter half-life of ⁶⁸Ga compared to the time taken for the ⁶⁸Ge determination by this method, such a determination is not feasible in clinical application. Obviously then, this method of determination does not fit with the standard protocols for the preparation, application and quality control of ⁶⁸Ga-radiopharmaceuticals.

If the level of 68 Ga co-eluted with the 68 Ge-breakthrough was zero, then increasing activities of 68 Ga would be measured. This would occur according to the secular radionuclide generator equilibrium, Eq. (4), (Roesch and Knapp 2011) which simplifies to Eq. (5) when $A_{Ga}^{0} = 0$

$$A_{Ga}^{t} = A_{Ge}^{0} (1 - e^{(\ln 2/t_{1/2})t})$$
(5)

Saturation or equilibrium is obtained when

$$A_{Ga}^{equ} = A_{Ge}^{equ} \tag{6}$$

Eq. (5) is illustrated graphically in Fig. 2 over a period of 10 halflives, where ⁶⁸Ge generates ⁶⁸Ga from a generator eluate with no initial ⁶⁸Ga present. The activity of ⁶⁸Ga in an initially pure ⁶⁸Ge sample registered at 28.10 and 67.71 min will represent ¹/₄ and ¹/₂ of the total ⁶⁸Ge activity initially present. Therefore, under these conditions, it is possible to determine the amount of ⁶⁸Ge present by multiplying the ⁶⁸Ga activity measured at 28.10 and 67.71 min by a factor of 4 and 2 respectively.

Currently used methods do not permit determination of the ⁶⁸Ge level in ⁶⁸Ga eluates, prior to the application of ⁶⁸Ga-radiopharmaceuticals.

The procedure described in this paper involves the removal of 68 Ga online from the initial generator eluate to obtain a solution completely free of 68 Ga, ($A_{ca}^o = 0$), but containing all of the 68 Ge-breakthrough. This allows the 68 Ge content to be determined free of any activity of eluted 68 Ga immediately after the elution by

t [min] 120 240 360 480 600 100 Activity of 68Ga [%] 75 50 25 0 0.0 2.0 4.0 6.0 8.0 10.0 t/t_{1/2}

Fig. 2. Kinetics of the secular equilibrium of the ${}^{68}\text{Ge}/{}^{68}\text{Ga}$ radionuclide generator for $A_{\text{Ga}}{}^0 = 25\%$ and 50% of the saturation (equilibrium) activity of ${}^{68}\text{Ga}$ are being generated after 28.10 and 67.71 min.

measuring the growing $^{68}\mathrm{Ga}$ activity as generated from $^{68}\mathrm{Ge}$ in situ.

Thus, the experimental concept relies on the quantitative separation of ⁶⁸Ga from ⁶⁸Ge and vice versa. Complete separation is achieved by the quantitative online adsorption of ⁶⁸Ga using strong cation-exchangers (CEXs). The use of CEX adsorbers is derived from the well-established concept used for the postprocessing commercial "ionic" ⁶⁸Ge/⁶⁸Ga radionuclide generators to separate ⁶⁸Ga(III) and ⁶⁸Ge(IV). Zhernosekov et al. (2007) described ~96% online adsorption of available 68Ga from 0.1 N HCl eluate solutions onto 53 mg of AG 50W-X8 (minus 400 mesh), whereas ⁶⁸Ge was not retained. This is also true for 0.05 N HCl eluting solution as used with organic resin based ⁶⁸Ge/⁶⁸Gagenerators, as well as 0.6 N HCl eluting solution as used with SnO₂-based inorganic resin generators (Roesch and Riss, 2010; Loktionova et al., 2009). The aim of this work was to increase the adsorption potential of the cation exchange resin from ~96% to 100% by increasing the amount of resin and/or altering its constitution.

2. Methods

 $^{68}\text{Ge}/^{68}\text{Ga-generator:}$ a two years old $^{68}\text{Ge}/^{68}\text{Ga-generator}$ (EZAG, Obninsk) with a yield of ~100 MBq ^{68}Ga and a $^{68}\text{Ge-breakthrough}$ of ~85 kBq was used. The generator was eluted with 5 ml of 0.1 N HCl in all cases.

Two strong acidic CEXs AG 50W-X8 (-400 mesh, Biorad) and SCX (Phenomenex), (cf. Table 1) were investigated for the online separation for ⁶⁸Ga and ⁶⁸Ge. The CEXs were used separately in different amounts, and in various combinations. In the case of combined resin columns, the generator was eluted first through the AG 50W-X8 and subsequently the SCX column. Table 1 shows

 Table 1

 Amount and combination of the used resins for complete partition of ⁶⁸Ge and ⁶⁸Ga.

Nr.	AG 50W-X8 (mg)	SCX (mg)
(iii)	50	-
(iv)	50	30
(v)	50	120
(vi)	220	-
	220	120

a list of the different CEX systems investigated. In order to determine the time required to reach equilibrium of $A_{Ga} = A_{Ge}$, the elution was performed without a CEX.

⁶⁸Ga was adsorbed online by the CEX, whilst ⁶⁸Ge was not retained and passed through the CEX into a measuring vial. The radioactivity of the CEX eluate was determined in a Curie-Meter (ISOMED 2010, Nuklear-Medizintechnik Dresden GmbH) every 5 min (automated mode) over the course of at least 20 h.

Used CEX were regenerated with 1 mL 4 N HCl followed by 1 mL water.

3. Results and discussion

Fig. 3 shows the variation of the 68 Ga activity measured using a Curie-Meter over a period of 20 h post generator elution without and with (ii–v) and without (i) online separation via CEXs.

Plot (i) represents the decay of the complete, non-processed, generator-eluate. The downward curve represents the overall decreasing fraction of 68 Ga in the waste vial. Line (ii) indicates the level of 68 Ga at 68 Ge/ 68 Ga-equilibrium, i.e. generated by the 68 Ge-breakthrough. A constant level of activity (or count rate) is indicative of a 68 Ge/ 68 Ga-equilibrium. The equilibrium activity depends on concentration of 68 Ge eluted (Eq. (4)) are reached after approximately 18 h.

Plots (iii)–(vi) illustrate the effect increasing adsorption of ⁶⁸Ga online has on the activity profile for the various CEX resins and their mass and/or combination used. Plot (iii) reflects the activity profile of the CEX eluate after using 50 mg of AG 50W-X8 resin to adsorb ⁶⁸Ga. Separation efficacy of almost two orders of magnitude for ⁶⁸Ga was achieved, which is in excellent agreement with the findings of Zhernosekov et al. (2007), indicating ~96% of online ⁶⁸Ga adsorption.

The use of 30 (iv) and 120 mg (v) SCX cartridges in combination with 50 mg of AG 50W-X8 further increased the amount of ⁶⁸Ga removed from the eluate—note the logarithmic scale used for the activity-axis of Fig. 3. Constant absolute activities of ⁶⁸Ga are obtained ~4 h after elution for CEX systems (iv) and (v), which is a considerable improvement on ~8 h required for system (iii). Nevertheless, the initial decrease in activity indicates that there is still an excess of ⁶⁸Ga present compared to that generated by ⁶⁸Ge.

When 220 mg of AG 50W-X8 (vi) CEX was used, an increasing activity was observed for the purified generator eluate. This increasing activity is indicative of ⁶⁸Ga generation by the decay of ⁶⁸Ge-breakthrough. Under these conditions the number of ⁶⁸Ga atoms present in the processed eluate is lowered by more than one order of magnitude compared to the number of ⁶⁸Ge atoms reflecting the breakthrough level. Therefore, the activity measured, directly represents the activity of ⁶⁸Ga generated by ⁶⁸Ge in the eluate. It was found that the addition of 120 mg SCX cartridge to the 220 mg AG 50W-X8 CEX does not further enhance ⁶⁸Ga absorption. Therefore, using 220 mg AG 50W-X8 alone (or in combination with 120 mg SCX) produces almost quantitative adsorption.

Fig. 3. Results of separation ⁶⁸Ga from ⁶⁸Ge-breakthrough for selected cation exchange resins. ⁶⁸Ga activities measured in kBq. Plot (i) initial, non-processed ⁶⁸Ge/⁶⁸Ga radionuclide generator eluate over time, with region (ii) equilibrium reflecting the level of ⁶⁸Ge activity achieved after about 18 h without purification. Plots (iii), (iv), (v) and (vi) for ⁶⁸Ge solutions after application of 50 mg AG 50W-X8, 50 mg AG 50W-X8+++120 mg SCX, 50 mg AG 50W-X8+++120 mg SCX, respectively. Line (vii) indicates half of the ⁶⁸Ga equilibrium activity measured after 67.71 min post elution representing 50% of the ⁶⁸Ge activity present in the case of complete adsorption of ⁶⁸Ga.

The activity (or count rate) increases for plot (v) according to the secular characteristics of the ⁶⁸Ge/⁶⁸Ga radionuclide generator equilibrium (Eq. (4)). A plateau is reached at about 4 half-lives (~5 h post elution), which is~~~95% of equilibrium. However, ⁶⁸Ge activities are quantifiable within 1 h of generator elution. For example, the activity (or count rate) measured at 67.7 min post elution of the generator (after Curie-Meter background subtraction) can be doubled to give the real ⁶⁸Ge activity, as at this time point ⁶⁸Ga is generated to 50% level of equilibrium. This is indicated by line (vii) in Fig. 3.

4. Conclusion

A simple method for the determination of ⁶⁸Ge content in ⁶⁸Ge/⁶⁸Ga-generator eluates immediately following generator elution has been described. Importantly, the protocol is suitable for use as a quality control procedure because it can be carried out in a time-frame which allows for subsequent application of the ⁶⁸Ga-radiopharmaceutical.

The approach involves quantitative separation ⁶⁸Ga from co-eluted ⁶⁸Ge, and vice versa. ⁶⁸Ga is quantitatively separated from ⁶⁸Ge using AG 50W-X8 CEX resin on its own, or in combination with SCX CEX resin. The ⁶⁸Ge content in the generator eluate can be quantified directly after the generator elution, by allowing the ⁶⁸Ga to "grow" for one (or 1/2) of its half-lives in the CEX purified ⁶⁸Ge fraction.

The protocol described provides instantaneous information on the level of ⁶⁸Ge present in ⁶⁸Ge/⁶⁸Ga-generator eluates without the use of γ -spectroscopy. In addition to the quality control of radiopharmaceuticals, this protocol may also be used to monitor the ⁶⁸Ge-breakthrough levels of generator on a daily/weekly/ monthly basis. For example, a Curie-Meter might be calibrated to a certain activity of ⁶⁸Ga defining a "critical" ⁶⁸Ge-breakthrough. Provided that the activity measured is below the critical level for that time point (e.g. 68 min), the processed eluate is within the maximum allowed ⁶⁸Ge-content. The European Pharmacopoeia defines a maximum 68 Ge-content of 10^{-3} % (European Directorate for the Ouality of Medicines and Healthcare, 2013). For a new 30 mCi generator, this corresponds to 50 kBg (or less) at 68 min (one half-life of ⁶⁸Ga) post elution. In practice, quality control of ⁶⁸Ge-breakthrough would simply involve validating, that the ⁶⁸Ga activity in a processed generator eluate (free of eluted ⁶⁸Ga) at 68 min post elution remains below that level.

This "preparative" protocol could be, for example, established on a weekly basis to monitor the ⁶⁸Ge content of a given ⁶⁸Ge/⁶⁸Ga-generator. It could also be useful to follow the longterm performance of a routinely and/or clinically used generator, as it would indicate when the ⁶⁸Ge-breakthrough level is no longer acceptable.

The protocol described can be easily implemented with existing methods and modules used for ⁶⁸Ge/⁶⁸Ga-generator

post-processing. Furthermore, the technology is applicable to all the commercial ⁶⁸Ge/⁶⁸Ga-generators, because the CEX resins used are equally effective with a wide range of HCl concentration (0.05–005–0005–0.6 N).

References

- Breeman, W.A.P., de Blois, E., Chan, H.S., Konijnenberg, M., Kwekkeboom, D.J., Krenning, E.P., 2011. ⁶⁸Ga-labeled DOTA-peptides and ⁶⁸Ga-labeled radiopharmaceuticals for positron emission tomography: current status of research, clinical applications, and future perspectives. Semin. Nucl. Med. 41, 314–321.
- clinical applications, and future perspectives. Semin. Nucl. Med. 41, 314–321.
 Breeman, W.A.P., Verbruggen, A.M., 2007. The ⁶⁸Ge/⁶⁸Ga generator has high potential, but when can we use ⁶⁸Ga-labelled tracers in clinical routine? Eur. J. Nucl. Med. Mol. Imaging 34, 978–981.
 European Directorate for the Quality of Medicines and Healthcare (Ed.), 2013.
- European Directorate for the Quality of Medicines and Healthcare (Ed.), 2013. Gallium (⁶⁸Ga) chloride solution for radiolabelling. Ph. Eur. 7, 7.8, 5643. (http:// online.edqm.eu).
- Loktionova, N.S., Belozub, D.B., Filosofov, D.V., Zhernosekov, K.P., Wagner, T., Türler, A., Roesch, F., 2009. Improved column-based radiochemical processing of the generator produced ⁶⁸Ga. Appl. Radiat. Isot 69, 942–946.
- Roesch, F., Knapp, F.F., 2011. (Russ), Radionuclide generators: radiochemistry and radiopharmaceutical chemistry in life sciences. In: Vértes, A., Nagy, S., Klencsár, Z., Lovas, R.G., Roesch, F. (Eds.), Volume 4 of Handbook of Nuclear ChemistrySecond Edition Springer.
- Roesch, F., Riss, P.J., 2010. The Renaissance of the ⁶⁸Ge/⁶⁸Ga radionuclide generator initiates new developments in ⁶⁸Ga radiopharmaceutical chemistry. Curr. Top. Med. Chem. 10, 1633–1668.
- Zhernosekov, K.P., Filosofov, D.V., Baum, R.P., Aschoff, P., Bihl, H., Razbas, A.A., Jahn, M., Jennewein, M., Rösch, F., 2007. Processing of generator-produced ⁶⁸Ga for medical application. J. Nucl. Med. 48, 1741–1748.